-
×
Non-Contact Velocity Meter With Water Level
The Geolux RSS-2-300WL has an integrated radar surface velocity and level meter for contactless measurements of surface flow velocity and water level. Contactless radar technology enables quick and simple sensor installation above the water surface with minimum maintenance. Calculation of the total flow discharge is internally implemented within the instrument by combining surface velocity measurement, water level measurement, and a configured cross-section of the river or channel. Defining the measurement parameters such as profile cross-section, material of the edges, location of the sensor above the water, and all other instrument settings can be easily set with the Geolux configuration application using any available communication interface.
Contactless flow measurement and surface velocity measurement
Integrated discharge (flow) calculation
RS-232, RS-485 Modbus, SDI-12, analog 4-20 mA interfaces in all models
Remote configuration of all instrument parameters through any digital communication interface
Robust IP68 aluminum or stainless steel enclosure
Early flood warning
Monitoring of flow and irrigation channels
Accurate discharge monitoring in rivers
Flow tracking in salt and copper mine channels
Sewage and waste water discharge measurement
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Velocity measurement instruments are devices that are used to measure the speed or velocity of an object or fluid. In the field of engineering, these devices play a crucial role in determining the movement and speed of different substances. There are different types of velocity measurement instruments, and each type has its specific applications.
For instance, some of the most commonly used velocity measurement instruments include Pitot tubes, hot-wire anemometers, and laser Doppler velocimetry. Pitot tubes, for example, are used to measure the velocity of fluid flow in pipes, while hot-wire anemometers are mainly used for air velocity measurements.
At ADK Instruments, we specialize in providing reliable and accurate velocity measurement instruments. Our instruments are designed to meet the specific needs of different industries, including aerospace, automotive, marine, and HVAC. We offer a wide range of instruments, including Pitot-static tubes, digital anemometers, thermal anemometers, and ultrasonic flow meters.
Our velocity measurement instruments are also equipped with advanced features that ensure accurate and reliable readings. For example, our Pitot-static tubes have pressure sensors that allow for more precise velocity measurements in difficult flow conditions. Our digital anemometers are designed to provide fast and accurate readings of air velocity and temperature.
In addition to providing high-quality instruments, we also provide comprehensive support services to ensure that our clients have the information and guidance they need for their velocity measurement needs. Our team of experts is always available to answer questions and provide technical support.
Velocity, the measure of the speed and direction of an object or fluid, is an important parameter in many fields. In industries such as aerospace, automotive, and manufacturing, accurate velocity measurements are key to ensuring safe and efficient operations. One primary tool for measuring velocity is the velocity measurement instrument.
Velocity measurement instruments come in several types, including pitot tubes, hot-wire anemometers, laser Doppler velocimetry, and ultrasonic anemometers. Pitot tubes are a simple and inexpensive instrument that measures the stagnation pressure of a fluid flow, which can be used to calculate velocity. Hot-wire anemometers measure the flow-induced cooling of a heated wire, which is proportional to the velocity. Laser Doppler velocimetry uses laser light to measure the Doppler shift in scattered light, which can be used to calculate flow velocity. Ultrasonic anemometers use high-frequency sound waves to measure the velocity of fluid flow.
At ADK Instruments, we specialize in providing a range of velocity measurement instruments for industrial applications. Our instruments are designed with advanced technology to provide accurate and reliable measurements, even in challenging environments. Whether you need to measure air velocity, water velocity, or other fluid velocity, our instruments are designed to meet your specific needs.
Velocity measurement instruments are essential tools for determining the speed of a moving object or fluid. There are several types of velocity measurement instruments used in various fields, including physics, engineering, and fluid dynamics. Here are some of the different types of velocity measurements:
1. Pitot Tube
This type of instrument is commonly used in aerodynamics to measure the velocity of aircraft. It works by measuring the difference between the static pressure and the dynamic pressure of the fluid. The pitot tube is placed facing the fluid stream, and the velocity is calculated based on the pressure difference.
2. Ultrasonic Flowmeter
Ultrasonic flowmeters use sound waves to determine the velocity of a fluid. It is based on the principle that the velocity of a fluid is directly proportional to the frequency shift produced by an ultrasonic beam passing through it. This instrument is commonly used in industries that deal with the transmission of fluids such as oil, water, and gas.
3. Laser Doppler Velocimeter
The Laser Doppler Velocimeter (LDV) is an instrument that measures velocity by analyzing the Doppler shift of laser light scattered by moving particles within a fluid. It is commonly used in fluid mechanics research and provides highly accurate measurements of turbulent flow dynamics.
4. Hot Wire Anemometer
The Hot Wire Anemometer is an instrument that measures the velocity of a fluid by measuring the temperature changes created by a hot wire placed in the fluid flow. The speed of the fluid can be calculated based on the rate of cooling of the wire, which varies with the velocity of the fluid. This instrument is commonly used in wind tunnels and other applications that involve measuring low-speed fluid flows.
5. Orifice Plate
The Orifice Plate is a flow meter that works by restricting the flow of a fluid by passing it through a small hole or an orifice. The difference in pressure before and after the orifice is measured to determine the velocity of the fluid. This instrument is commonly used in industrial applications for measuring the flow rates of fluids like water, oil, and gas.
6. Turbine Flowmeter
Turbine Flowmeters are commonly used in industries that deal with the transmission of fluids. This instrument works by measuring the speed of the fluid flowing through the turbine blades. As the fluid flows through the turbine, it causes the blades to spin, and the velocity can be calculated by measuring the rotational speed of the turbine. Turbine flowmeters are commonly used in applications like water treatment plants, chemical processing, and petroleum refineries.
In conclusion, velocity measurement instruments are essential tools for accurately determining the velocity of fluids and moving objects. The choice of instrument depends on the specific application, and it is crucial to select the most appropriate instrument for accurate measurements. Whether you are working in the field of physics, engineering, or fluid dynamics, understanding the different types of velocity measurement instruments available will help you select the best instrument for your application.
General specifications | |
Detection Distance | 15 m / 30 m |
Speed Range | 0.02 m/s to 15 m/s |
Speed Resolution | 0.001 m/s |
Speed Accuracy | 1% |
Level Resolution | 0.5 mm |
Level Accuracy | +/-2 mm |
IP Rating | IP68 |
Electrical & Mechanical | |
Input Voltage | 9 to 27 VDC |
Power Consumption | 1,3 W operational; 0,235 W standby |
Maximal Current | < 750 mA |
Temperature Range | -40 °C to +85 °C (without heating or coolers) |
Enclosure Dimensions | 150mm x 200mm x 250mm |
Interface | |
Serial Interface | 1 x serial RS-485 half-duplex 1 x serial RS-232 (two wire interface) |
Baud Rate | 9600 bps to 115200 bps |
Serial Protocols | GLX-NMEA Modbus |
Other Protocols | SDI-12 |
Analog Output | 4-20 mA, programmable velocity, level or flow |
Certificates | EN 61326-1:2013 EN 301 489-3 V2.1.1:2019 EN 300 440 V2.2.1:2018 FCC Part 15 class B ISED RSS211 |